com.yahoo.ml.caffe

CaffeOnSpark

class CaffeOnSpark extends Serializable

CaffeOnSpark is the main class for distributed deep learning. It will launch multiple Caffe cores within Spark executors, and conduct coordinated learning from HDFS datasets.

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. CaffeOnSpark
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new CaffeOnSpark(sc: SparkContext)

    sc

    Spark Context

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def features[T1, T2](source: DataSource[T1, T2]): DataFrame

    Extract features from a specific data source.

    Extract features from a specific data source. Features will be saved into DataFrame per configuration.

    source

    input data source

    returns

    Feature data frame

  11. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. val floatarray2doubleUDF: UserDefinedFunction

  13. val floatarray2doublevectorUDF: UserDefinedFunction

  14. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  20. val sc: SparkContext

    Spark Context

  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  22. def test[T1, T2](source: DataSource[T1, T2]): Map[String, Seq[Double]]

    Test with a specific data source.

    Test with a specific data source. Test result will be saved into HDFS file per configuration.

    source

    input data source

    returns

    key/value map for mean values of output layers

  23. def toString(): String

    Definition Classes
    AnyRef → Any
  24. def train[T1, T2](source: DataSource[T1, T2]): Unit

    Training with a specific data source

    Training with a specific data source

    source

    input data source

  25. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped